
Lightweight Silent Data Corruption Detection in
Ordinary Di�erential Equation Solvers

Pierre-Louis Guhur,1,2 Hong Zhang,1 Tom Peterka,1 Emil Constantinescu,1 and
Franck Cappello1

1 Argonne National Laboratory (USA)
{hongzh, emconsta, tpeterka, cappello}@mcs.anl.gov

2 ENS de Cachan (France)
pierre-louis.guhur@ens-cachan.fr

Abstract Silent data corruptions (SDCs) are errors that corrupt the
system or falsify results while remaining unnoticed by firmware or oper-
ating systems. In numerical integration solvers, SDCs that impact the
accuracy of the solver are considered significant. Detecting SDCs in
high-performance computing is necessary because results need to be trust-
worthy and the increase of the number and complexity of components in
emerging large-scale architectures makes SDCs more likely to occur. Until
recently, SDC detection methods consisted in replicating the processes
of the execution or in using checksums (for example algorithm-based
fault tolerance). Recently, new detection methods have been proposed
relying on mathematical properties of numerical kernels or performing
data analysis of the results modified by the application. None of those
methods, however, provide a lightweight solution guaranteeing that all
significant SDCs are detected. We propose a new method called Hot Rod
as a solution to this problem. It checks and potentially corrects the data
produced by numerical integration solvers. Our theoretical model shows
that all significant SDCs can be detected. We present two detectors and
conduct experiments on streamline integration from the WRF meteorol-
ogy application. Compared with the algorithmic detection methods, the
accuracy of our first detector is increased by 52% with a similar false
detection rate. The second detector has a false detection rate one order
of magnitude lower than these detection methods while improving the
detection accuracy by 23%. The computational overhead is lower than 5%
in both cases. The model has been developed for an explicit Runge-Kutta
method, although it can be generalized to other solvers.

Keywords: resilience, fault tolerance, Runge-Kutta, numerical integration solvers,
HPC, SDC

� Introduction

Ensuring trustworthy results has always been a critical challenge for scientists.
In numerical simulations, results can be impaired by silent data corruptions
(SDCs). Because of an ever increasing number of processes, exascale reports [��]

� Guhur et al.

project an increase in the SDC rate in future systems. The origins of SDC are
diverse. Examples of SDC sources are electromagnetic interferences [��], ionizing
radiation [�], and aging of hardware components.

Replication [��] can detect SDCs by duplicating the same program (or other
versions in n-version programming [�]) and comparing their results. In a deter-
ministic program, all duplications must provide exactly the same result; otherwise
the results are considered corrupted. The protection of linear algebra results
in algorithm-based fault tolerance (ABFT) [��] and the error-correction code
memory (ECC) [�] are both based on checksums: ABFT computes and performs
detection inside the software, and ECC memory is inside the hardware. All these
methods are generic (although ABFT is limited to certain numerical kernels), and
only a few percents of SDCs are undetected. However, these methods may be too
computationally expensive (replication), or they do not protect each component.
ABFT covers only the data used in the kernel and not the other data used by
the application. ECC protects only memory, caches, and registers; it usually does
not protect the CPU control logic or its functional units.

In the context of iterative, time-stepping methods, new detection techniques
compare the results of the numerical method with results produced by a surrogate
function. Because previous steps of the numerical method have already been
validated, the surrogate function can use these values as trusted references to
compute its own results for the current step. In the adaptive impact-driven
(AID) detector [�], the surrogate function computes value predictions for the
current step by extrapolation from several past steps of the numerical method. If
the di�erence between the numerical method results and the surrogate function
predictions is outside a certain confidence interval, an SDC is reported. AID uses
di�erent extrapolation methods from order � to � and selects dynamically the
one that minimizes the prediction error. The confidence interval is built from
the acceptable bound (given by the user) upon which SDCs are considered as
impacting the results, the number of false positives, and the maximum error of
extrapolation. Following a di�erent direction, Benson et al. [�] propose a more
complex surrogate function by computing an error estimate. As with the AID
detector, the estimate is compared to a predicted value. If the estimate for the
current step is not similar to previous estimates, an SDC is reported. Their
detector is called BSS��. While the two approaches are di�erent, they both use
extrapolation and thus rely on the smoothness property of the data set (AID)
or of the estimate (BSS��) to perform accurate detection. As shown in Sect. �,
they do not guarantee that all SDCs impacting the accuracy of the iterative
methods are detected, in particular when the data set (AID) or the estimate
(BSS��) presents sti� variations.

Our objective is to design and develop a new SDC detection technique that
presents a high detection accuracy (also called recall or true positive rate, TPR)
and a low false detection rate (also called false positive rate, FPR), and does
not rely on extrapolation. We mathematically show that all significant SDCs are
detected. In the context of numerical integration solvers, a solver is chosen because
its approximation error is acceptable with respect to the required accuracy of the

Hot Rod �

results. We consider that an SDC is significant when the introduced error is bigger
than the approximation error of the solver. We built two new detectors relying on
mathematical properties of the ordinary di�erential equation (ODE) integration
method. Our detection technique compares two estimates of this approximation
error. We chose estimates that are similar if and only if no significant SDC occurs.
A confidence interval on the similarity, established from a simple machine learning
algorithm, controls the SDC detection. If an SDC is detected, the correction is
done by recomputing the step. The two detectors present di�erent tradeo�s. One
has a high accuracy (we call it Hot Rod HR, for resilient ODE high recall) and
small false detection rate. The other has a false detection rate lower than 1%
but also a lower accuracy (we call it Hot Rod LFP, for low false positive). We
designed the two detectors for Cash-Karp’s method [�], a fourth-order Runge-
Kutta method with a fixed-step size. However, our technique can be applied to
other ODE integration methods as discussed in Sect. �.

Because all significant SDCs are detected, our detectors improve the trust-
worthiness of the results while avoiding wasting of resources to recover from
insignificant SDCs. We performed experiments on a streamline integrator used
for visualizing of WRF meteorology application results [��].

Section � explains background. In Sect. �, our method for detecting SDC
is detailed, and proof is given that all significant SDC are detected. In Sect. �,
our SDC detectors are tested in a meteorology application and compared with
replication and the AID and BSS�� detectors.

� Background

An ODE is a di�erential equation of one independent variable and its derivatives.
Because numerical integration solvers are widely used, trust in their results is
critical. An initial value problem can be formulated as

xÕ(t) = f(t, x(t)), x(t0) = x0,

with t0 œ R, x0 œ Rm, x : R æ Rm, and f : R ◊ Rn æ Rm; f is L-Lipschitz
continuous.

�.� Runge-Kutta methods

For each n = 1, ..., N with N the total number of steps, Runge-Kutta methods
(RKMs) provide an approximation x

n

of x(t
n

), where t
n

= t0 + nh, h œ Rú
+ the

step size, and x(t
n

) the exact solution of the ODE at time t
n

. An s-stage explicit
RKM is defined by

’i Æ s, k
i

= f

Q

at
n

+ c
i

h, x
n

+ h

i≠1ÿ

j=1
a

ij

k
j

R

b ; x
n+1 = x

n

+ h

sÿ

i=1
b

i

k
i

.

Here (k
i

)
i

are called the stage slopes and represent the most computation-
ally expensive part of the method. The local truncation error (LTE) is the

� Guhur et al.

approximation error introduced at a step n + 1, and it can be defined by
LTE

n+1 = x
n+1 ≠ x̃(t

n+1, x
n

), with x̃(t, x
n

) the exact solution of the prob-
lem x̃Õ(t, x

n

) = f(t, x̃(t, x
n

)), x̃(t
n

, x
n

) = x
n

. The global truncation error (GTE)
is the absolute di�erence between the correct value x̃(t

n

, x0) and the approx-
imated value x

n

. An ODE integration method is said to have an order p if
LTE

n

= O(hp+1) and GTE
N

= O(hp), where N is the last step.
In the following, we focus on a RKM called Cash-Karp’s method [�], while

generalization is discussed in Sect. �. Cash-Karp’s method has an order � and
computes six stages. Although two more stages than the classical fourth-order
Runge-Kutta method are required, Cash-Karp’s method allows us to compute the
embedded method that is used in BSS��, in our detectors, and in the adaptive
integration scheme.

�.� Embedded methods

LTE can be estimated with embedded methods. These methods compute two
results xp

n

and xq

n

from two RKMs with orders p and q (in general |q ≠ p| = 1).
The solution is propagated by one of these results, while its stages (and possibly
extra stages) are reused to compute the other result in order to achieve a low
overhead. In the case of Cash-Karp’s method, p = 4 and q = 5. If LTEq

n

has a
higher order than does LTEp, the di�erence between xp

n

and xq

n

estimates LTEp:

E
n

= xp

n

≠ xq

n

= xp

n

≠ x̃(t
n

, x
n≠1) ≠ (x̃(t

n

, x
n≠1) ≠ xq

n

) ,

= LTEp

n

≠ LTEq

n

,

= LTEp

n

+O(hq+1).

�.� Radau’s quadrature

Another way of estimating LTE is suggested by Stoller and Morrison [��] and
extended by Ceschino and Kuntzmann [�]. Relying on Radau’s quadrature and
Taylor’s expansion, Ceschino and Kuntzmann give an expression of the LTE of a
method given its order p Æ 5. The estimate R

n

, called here Radau’s estimate, does
not require the computation of any extra stage , but it checkpoints previous stages
and solutions. Therefore, it has a memory overhead, rather than a computational
overhead as does the embedded method. Since E

n

is a sixth-order estimate, we
use the following estimate R

n

presented by Butcher and Johnston [�]:

R
n

= h

10 [3f(t
n≠2, x

n≠2) + 6f(t
n≠1, x

n≠1) + f(t
n

, x
n

)]

≠ 1
30 [x

n≠3 + 18x
n≠2 ≠ 9x

n≠1 ≠ 10x
n

]

= LTEp

n

+O(hp+2).

Hot Rod �

� Proposed Hot Rod method
Our method relies on a surrogate function ∆

n

that is the di�erence between
two estimates: ∆

n

= A
n

≠ B
n

. For Cash-Karp’s method, we use the embedded
estimate A

n

= E
n

and Radau’s estimate B
n

= R
n

. In the absence of SDC, the
surrogate function becomes O(hp+2):

∆
n

=
!
LTE

n

+O(hp+2)
"

≠
!
LTE

n

+O(hp+2)
"

= O(hp+2).
In Hot Rod HR, the surrogate function is compared with a certain confidence

interval centered over zero. When the surrogate function is outside the confidence
interval, an SDC is reported. We show that all significant SDCs are detected.
However, Hot Rod HR may have a false positive rate of a few percents. In Hot
Rod LFP, we chose a larger confidence interval, and its false positive rate remains
below � percent.

�.� First detector: Hot Rod HR
In regular cases, our surrogate function is one order higher than that of the LTE.
In presence of an SDC, ∆

n

is outside the confidence interval, as shown in the
following paragraph. Hence, SDCs whose introduced errors are even smaller than
the LTE are expected to be detected. We show that all significant SDCs are
detected by Hot Rod HR.

Detection of significant SDCs An SDC is detected when |∆c

n

| Ø C
n

with C
n

the half-length of the confidence interval at step n. It is all the more di�cult to
detect when ∆o

n

= 0. We show that the minimum injected error ‘
min

that can
be detected is of the same order as that of the approximation error.

We study the case of a corrupted stage k
i

; the case of a corrupted result x
n

itself is similar. Here, kc

i

= ‘ ≠ ko

i

, where c (resp. o) denotes corrupted (resp.
uncorrupted) data:

∆c

n

≠ ∆o

n

= Ec

n

≠ Eo

n

≠ (Rc

n

≠ Ro

n

) = h‘

5
b̂

i

+ b
i

3
1
30 ≠ 3”

i,1
10

46
,

where ”
ij

is defined by ”
ij

= 1 if i = j; otherwise ”
ij

= 0, (b
i

) (resp. (b̂
i

)) are the
coe�cients of the order � (resp. �) in Cash-Karp’s method.

The minimum error ‘
min

that we can detect corresponds to the case |∆c

n

≠ ∆o

n

| =
C

n

≠ 0. We note that B = b̂
i

+ b
i

1
1

30 ≠ 3”i,1
10

2
. This leads to

‘
min

= C
n

hB
= O

3
C

n

h

4
.

When x
n

is corrupted instead of a stage, one can derive that ‘
min

= O(C
n

). If
C

n

has the same order as ∆
n

, then (�) ‘
min

= O(hp+1) when an error is injected
inside a stage and (�) ‘

min

= O(hp+2) when an error is injected inside a result.
In other words, the threshold of detection has the same order as (or better than)
the LTE of Cash-Karp’s method. This guarantees that all significant SDCs are
detected.

� Guhur et al.

Confidence interval Because ∆
n

= O(hp+2), one can assume that ∆
n

acts
as a random variable, with a zero-mean in the absence of SDC. Its standard
deviation can be estimated from a training set T composed of N

s

samples with
the unbiased sample standard deviation

‡ =
ı̂ıÙ 1

N
s

≠ 1

Nsÿ

n=1
∆2

n

. (�)

Assuming that (∆
n

)
n

follows a normal distribution, the “three sigma rule” [��]
suggests choosing C

n

= 3‡. Thus, we expect that 99.7% of uncorrupted (∆
n

)
n

fall
within the confidence interval, or in other words a false positive rate of 0.3%. The
normal distribution is a natural choice for modeling the repartition of training
samples.

Because items from T are not labeled as trusted or untrusted samples, the
evaluation of ‡ might be corrupted. It thus would jeopardize the confidence
interval and thus the SDC detector. To improve reliability, we weighted each ∆

n

with its own value. Equation (�) becomes

À =
Nsÿ

n=1
exp (≠∆2

n

); ‡ =
ı̂ıÙ 1

(N
s

≠ 1)À

Nsÿ

n=1
exp (≠∆2

n

)∆2
n

.

Adaptive control The hypothesis of a normal distribution may be invalidated.
We therefore developed a correction of the confidence interval based on false
positives.

When an SDC is reported, the current step is recomputed. If the result has
the same value, we can assume that it was a false positive and not an SDC.
Because of the “three sigma rule,” the FPR is expected to be 0.3%. If the FPR
is an order of magnitude higher, at 3%, for k times, the confidence interval is
increased with a certain coe�cient 1 + –. C

n

becomes C
n

= (1 + –)k ◊ 3‡, where
– fixes the rate of the adaptive control. Because (1 + –)k = 1 + –k + O(–2), – is
taken as 1/(max (FPR) ◊ N), where N is the number of steps in the application
and max (FPR) is the maximum acceptable false positive rate. Because a false
positive requires the recomputation of a noncorrupted step, we suggest setting
max (FPR) at 5% to limit the computational overhead. In our experiments, we
have N = 1000; thus – = 0.02.

Thanks to the adaptive control, the training set requires only a few steps. In
our experiments, we have found that N

s

= 5 samples are su�cient to initialize
the confidence interval.

�.� Second detector: Hot Rod LFP

If the cost of a false positive is too high, Hot Rod HR is not suitable. Hence,
we designed a second detector with a larger confidence interval. Nonetheless, all
significant SDCs must still be detected.

Hot Rod �

This new confidence interval is defined by

C
n

= 10C99(|∆| œ T).

C99 denotes the ��th percentile of the training set. The interval can be interpreted
as a threshold that is an order of magnitude bigger than the surrogate functions
in the training set. Because this threshold is higher than the previous one, this
detector’s recall is lower. Because the estimates are at order p = 4 for Cash-
Karp’s method, the LTE at step n can be expressed as LTE

n

= Chp+1 +O(hp+2).
We show that the GTE at the last step N is still an order p, since it used to
be without corruption. We assume the probability that an SDC occurs and
is accepted as small enough to guarantee that at most only one SDC will be
accepted. The worst case is when this SDC is accepted at the first step, n = 1,
and when C

n

= ∆
n

. Hence, the introduced error is LTE1 = 10Chp+1 + O(hp+2).
Because GTE1 = LTE1, GTE1 = 10Chp+1 + O(hp+2).

With x̃(t, x
n

) the notation in Sect. �.�, x(t) = x̃(t, x0), and one can write
that the GTE at a step 0 < n < N is

| GTE
n+1 | = |x(t

n+1) ≠ x̃(t
n+1, x

n

) + x̃(t
n+1, x

n

) ≠ x
n+1| ,

Æ |x(t
n+1) ≠ x̃(t

n+1, x
n

)| + |x
n+1 ≠ x̃(t

n+1, x
n

)| .

Because f is L-Lipschitz continuous, the Gronwall’s inequality simplifies the
first term to

|x(t
n+1) ≠ x̃(t

n+1, x
n

)| Æ |x̃(t
n

, x0) ≠ x̃(t
n

, x
n≠1)| eLh = |GTE

n

| eLh.

The second term, |x
n+1 ≠ x̃(t, x

n+1)|, is the LTE at step n+1 and so is evaluated
at Chp+1 + O(hp+2). Denoting “ = eLh, we obtain

|GTE
n+1|

“n

Æ |GTE
n

|
“n≠1 + Chp+1

“n

Æ ... Æ |GTE1| + Chp+1
nÿ

i=1

1
“i

.

Because
q

N

i=1 1/“i = (“N ≠ 1)/“N (“ ≠ 1) and “ ≠ 1 Ø Lh, noting · = Nh, we
obtain

|GTE
n+1| Æ 10Chp+1 + Chp

L

!
eL· ≠ 1

"
+ O(hp+2).

At the last step, we have verified that GTE
N

= O(hp). The order of GTE is
unchanged: the SDC is insignificant.

�.� Algorithm
We presented two detectors and showed their e�ciency. They di�er in their
tradeo�s: Hot Rod HR has a higher TPR, and Hot Rod LFP has a lower FPR.
We saw that undetected SDCs have no impact on the accuracy of the ODE
method. They require fixing the parameter –, but simple indications are given.
We can thus derive two scenarios. If an SDC is likely to happen (it could be the
case when the processor is not protected from SDC by ECC memory or other
protection system), then Hot Rod HR is employed. Otherwise, employing Hot
Rod LFP allows us to detect all significant SDCs with fewer false positives. The
schema is illustrated in Algorithm � for a given detector.

� Guhur et al.

while learning do

step Ω simulation(prev. step) ;
∆ Ω |A(step, prev.steps) ≠ B(step, prev.steps)| ;
TraininigSet.push(∆) ;

end

while new step do

step Ω simulation(prev. step) ;
∆ Ω |A(step, prev.steps) ≠ B(step, prev.steps)| ;
if (Detector == Hot Rod HR and ∆ Æ Cn) or (Detector == Hot Rod LFP
and ∆ Æ Cn) then

report(“no error”) ;
accept step ;

end

else

step Ω simulation(prev. step) ;
∆Õ Ω |A(step, prev.steps) ≠ B(step, prev.steps)| ;
if ∆Õ = ∆ then

report(“false positive”) ;
if FPR > 3% then

k++ ;
end

end

accept step ;
end

end

Algorithm �: Pseudocode for the execution of our detectors

� Experiments and results

We have shown theoretically that all significant SDCs are detected with Hot Rod.
In this section, we evaluate the SDC detectors with a meteorology application.

�.� Environment

Experiments were computed on a machine with four Intel Xeon E���� CPUs
(each with � cores and � threads), �� GB RAM, and one NVIDIA Kepler K��
GPU with �� GB memory. It was programmed in C++�� using CUDA. The
application is particle tracing for streamline flow visualization [��],[��], [��]. The
solver integrates a velocity field to compute the streamline. It stops when the
streamline goes outside the velocity field. Uncorrected streamlines can thus be
shorter than they were supposed to be.

�.� SDC injection methodology

An SDC can arise from many sources in hardware and software [�], [��], and these
sources may change with new versions and generations of hardware and software.

Hot Rod �

Figure �. Streamlines computed by the application. The color gradient starts in red at
seeds; �,��� streamlines are computed.

We do not attempt to evaluate exhaustively the coverage of our approach because
of space limitations. SDCs are simulated by flipping bits in data items. SDCs
a�ect one or several bits in the same data item, called respectively singlebit and
multibit corruption. We experimented with both cases. In multibit corruption,
we chose the number of bit-flips Nflips from a uniform distribution. Other
distributions such as normal and beta distributions were tested with several
di�erent parameters, but the results were not significantly di�erent from those
reported below. Corruption can a�ect data items in any stage (or even directly
in the result). The position of a bit-flip is drawn from a uniform distribution. In
multibit corruption, we have forced the Nflips bit-flips to be applied on Nflips
di�erent positions. Some SDC have no impact on the results. In a third scenario,
we inject only significant singlebit corruptions. We considered that an SDC is
significant when the di�erence between the corrupted result and the safe result
is higher than the mean LTE.

�.� Benchmark

We compared our approach with similar methods presented in Sect. �: replication,
AID and BSS�� detectors. Those methods need to be parametrized. We compared
results with a set of parameters and selected the parameters that provide the
best results in our application. Using the same notation as in [�], we configure
AID with ◊r = 1. Results were improved if the confidence interval is taken as
(1 + –)k(‘ + ◊r) with – = 0.2 and k defined in Sect. �.�. Concerning BSS��, five
parameters should be set, but no indication is detailed in [�] about two of them.
With the notation of [�], the considered values are ·

j

= 1e≠5, ·
v

= 0.02, ≈ = 1.4,
“ = 0.95, and p = 10.

�.� Results

Table � presents results from our benchmark. We did not compare each
detector with a solver with no detector. We compared each detector with a
perfect detector that returns the ground truth. For computational overhead, we
divided the execution time of each detector with that of the perfect detector. Our

�� Guhur et al.

Table �. Benchmark of our detectors Hot Rod (H.R.) LFP and HR, replication, AID
and BSS��. Values in the column “IRE ��%” are the injected relative errors (IRE) that
were detected 95% of the time.

Detector
TPR (%)

FPR (%) IRE 95%
Overheads (%)

Singlebit Multibit Significant Comp. Memory
Replication 100.0 100.0 100.0 100.0 0.0 +100 +100

AID 14.3 43.2 86.7 1.6 7e≠6 +4.6 +57
BSS�� 18.8 49.5 91.2 0.6 4e≠6 +3.7 +14

H.R. LFP 23.1 64.6 99.9 0.01 7e≠8 +3.8 +57
H.R. HR 28.6 69.6 99.9 1.2 5e≠9 +4.4 +57

detectors have a computational overhead lower than 5%, as do the BSS�� and
AID detectors. It is 20 times less computationally expensive than replication. But
unlike the AID detector, our detectors have to employ an embedded integration
method that computes more stages than does another Runge-Kutta method of
the same order.

Our detectors have a higher memory cost than does the BSS�� detector, but
a smaller memory cost than does replication. For estimating memory overheads,
we counted the number of additional stored solutions (x

n

)
n

and stage slopes (k
i

)
i

with respect to the perfect detector. Cash-Karp’s method requires computing
and storing two additional stage slopes than does Runge-Kutta �, but the same
number as the other embedded fourth-order methods. Cash-Karp’s method
requires storing � (k

i

)
i

(among them f(x
n≠1)), and x

n

; x
n≠1 is stored to allow a

rollback in case of SDC detection; R can use the same storage as E ; when f(x
n≠1)

is employed in the Radau estimation, f(x
n

) can be computed at the position
(the result is employed at the next step if the step is accepted). E , f(x

n≠2), x
n≠2

and x
n≠3 are stored for our detectors, whereas AID stores x

n≠2, x
n≠3, x

n≠4, and
the extrapolated solution, and BSS�� stores E .

The true positive rate (TPR) shows that our detectors detect perfectly (at
99.9%) significant SDCs. Replication does as well, but the BSS�� and AID
detectors have a TPR of 91.2% and 86.7% of significant SDCs, respectively. For
BSS�� and AID, some SDCs can thus be undetected while a�ecting the accuracy
of the solvers. Moreover, the “IRE ��%” value of our detectors is smaller than
the mean local error estimate (1.5e≠6) by a factor of ���. Because all significant
SDCs are detected, SDCs undetected by Hot Rod are sure to have no impact. The
undetected 76.9% of SDCs by Hot Rod LFP are thus insignificant and do not need
to be corrected: correcting these insignificant SDCs would not improve results
and would demand extra computation. Figure � shows the LTE of the solver in
the confidence interval in the absence of SDC. It represents the approximation
error. As defined in Sect. �, significant SDCs inject errors that are higher than
this error. Because the streamlines of the AID and BSS�� detectors are pushed
outside the confidence interval at SDC injections, they do not detect those SDCs.

Hot Rod ��

On the other hand, Hot Rod HR and LFP’s streamlines are not a�ected by SDCs:
these detectors protected the solver. This result is consistent with the fact that
the IRE 95% of Hot Rod is two orders of magnitudes less than the approximation
error.

600 650 700 750 800

Step

6377060

6377070

6377080

6377090
So

lu
ti

on
(m

)

SDC
BSS14

AID
H.R. HR

H.R. LFP
± LTE

Figure �. One streamline computed by the di�erent detectors. Singlebit injection is
made every �� steps. In the window, the position of the bit-flip varies from �� to �� in
IEEE��� doubleprecision. The interval “± LTE ” represents the approximation error.
Significant SDCs shift the solution outside this interval. In the application, the origin is
the center of the Earth.

� Conclusion
This study presented our SDC detection method Hot Rod for ODE integration
solvers. Both experimental and theoretical results show that all significant SDCs
are detected. Except for replication, no other tested SDC detectors achieve
these results. More specifically, compared with the algorithmic detection SDC
detectors, the true positive rate is improved by 52% for singlebit corruptions;
whereas compared with replication, the computational overhead is reduced by
20 times. Moreover, users need only to fix the maximum false positive rate, as
explained in Sect. �.

Our detectors were employed for one of the ODE integration methods. Other
embedded Runge-Kutta methods can be directly employed. Radau’s estimates
have a general expression in the case of adaptive step size; see the work of
Butcher and Johnston [�]. For implicit methods or linear multisteps, Richardson’s
estimates can also be used. In future work, we plan to investigate detection in
partial di�erential equation solvers.

Acknowledgments We express our gratitude to Julie Bessac for assistance
with the algorithm and Gail Pieper for comments that greatly improved the
manuscript. We also gratefully acknowledge the use of the services and facilities of
the Decaf project at Argonne National Laboratory, supported by U.S. Department
of Energy, O�ce of Science, Advanced Scientific Computing Research, under

�� Guhur et al.

Contract DE-AC��-��CH�����, program manager Lucy Nowell. We also thank
the anonymous reviewers for their helpful comments.

References
�. Bagatin, M., Gerardin, S.: Ionizing Radiation E�ects in Electronics: From Memories

to Imagers. Devices, Circuits, and Systems, CRC Press (����)
�. Bairavasundaram, L.N., Goodson, G.R., Pasupathy, S., Schindler, J.: An analysis of

latent sector errors in disk drives. In: ACM SIGMETRICS Performance Evaluation
Review. vol. ��, pp. ���–��� (����)

�. Benson, A.R., Schmit, S., Schreiber, R.: Silent error detection in numerical time-
stepping schemes. International Journal of High Performance Computing Applica-
tions (����)

�. Butcher, J., Johnston, P.: Estimating local truncation errors for Runge-Kutta
methods. Journal of Computational and Applied Mathematics ��(�), ���–���
(����)

�. Cash, J.R., Karp, A.H.: A variable order Runge-Kutta method for initial value
problems with rapidly varying right-hand sides. ACM TOMS ��(�), ���–��� (����)

�. Ceschino, F., Kuntzmann, J.: Numerical solution of initial value problems (����)
�. Chen, L., Avizienis, A.: N-version programming: A fault-tolerance approach to

reliability of software operation. In: Digest of Papers FTCS-�. pp. �–� (����)
�. Di, S., Cappello, F.: Adaptive impact-driven detection of silent data corruption for

HPC applications. IEEE Transactions on Parallel and Distributed Systems (����)
�. Ghosh, S., Basu, S., Touba, N.A.: Selecting error correcting codes to minimize

power in memory checker circuits. Journal of Low Power Electronics pp. ��–��
(����)

��. Guerraoui, R., Schiper, A.: Software-based replication for fault tolerance. Computer
(�), ��–�� (����)

��. Guo, H., He, W., Peterka, T., Shen, H.W., Collis, S.M., Helmus, J.J.: Finite-time
lyapunov exponents and lagrangian coherent structures in uncertain unsteady flows.
IEEE TVCG (Proc. PacificVis ��) �� (����), to appear

��. Huang, K.H., Abraham, J., et al.: Algorithm-based fault tolerance for matrix
operations. IEEE Transactions on computers ���(�), ���–��� (����)

��. Hwang, A.A., Stefanovici, I.A., Schroeder, B.: Cosmic rays don’t strike twice:
understanding the nature of DRAM errors and the implications for system design.
In: ACM SIGPLAN Notices. vol. ��, pp. ���–��� (����)

��. Krishnamoorthy, K., Mathew, T.: Statistical tolerance regions: theory, applications,
and computation, vol. ���. John Wiley & Sons (����)

��. Lapinsky, S.E., Easty, A.C.: Electromagnetic interference in critical care. Journal
of Critical Care ��(�), ���–��� (����)

��. McLoughlin, T., Laramee, R.S., Peikert, R., Post, F.H., Chen, M.: Over two decades
of integration-based, geometric flow visualization. In: Eurographics ���� State of
the Art Report. pp. ��–��. Munich, Germany (����)

��. Peterka, T., Ross, R., Nouanesengsy, B., Lee, T.Y., Shen, H.W., Kendall, W.,
Huang, J.: A study of parallel particle tracing for steady-state and time-varying
flow fields. In: IPDPS. pp. ���–���. IEEE (����)

��. Snir, M., Wisniewski, R.W., Abraham, J.A., Adve, S.V., Bagchi, S., Balaji, P.,
Belak, J., Bose, P., Cappello, F., Carlson, B., et al.: Addressing failures in exascale
computing. International Journal of High Performance Computing Applications
(����)

Hot Rod ��

��. Stoller, L., Morrison, D.: A method for the numerical integration of ordinary
di�erential equations. Mathematical Tables and Other Aids to Computation �� pp.
���–��� (����)

